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Abstract

Kinetics of radiation induced segregation and precipitation in binary alloys are studied by Monte Carlo simulations.
The simulations are based on a simple atomic model of diffusion under electron irradiation, which takes into account
the creation of point defects, the recombination of close vacancy–interstitial pairs and the point defect annihilation at
sinks. They can reproduce the coupling between point defect fluxes towards sinks and atomic fluxes, which controls the
segregation tendency. In pure metals and ideal solid solutions, the Monte Carlo results are found to be in very good agree-
ment with classical models based on rate equations. In alloys with an unmixing tendency, we show how the interaction
between the point defect distribution, the solute segregation and the precipitation driving force can generate complex
microstructural evolutions, which depend on the very details of atomic-scale diffusion properties.
� 2005 Elsevier B.V. All rights reserved.

PACS: 61.80.x; 61.80.Az; 61.82.Bz; 64.75.+g
1. Introduction

Since the mid seventies, many radiation induced
segregation (RIS) and precipitation (RIP) phenom-
ena have been observed in model alloys or in struc-
tural materials of nuclear reactors (see e.g. Ref. [1]
for a review of the major experimental results). At
the atomic scale, the origin of RIS and RIP is rela-
tively well understood: they result from the coupling
between the fluxes of point defects created by the
irradiation and chemical species fluxes [2–6]. A
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quantitative prediction of segregation and precipita-
tion kinetics requires a precise description of the
point defect jump mechanisms which control the
coupling. With the usual models, based on general-
ized diffusion equations, the latter is often quite dif-
ficult, mainly because of the correlations between
successive point defect jumps. Atomistic kinetic
Monte Carlo (AKMC) simulations, based on point
defect diffusion model under irradiation, can avoid
this difficulty, because they naturally involve corre-
lations effects. Our main objective is to show that
such simulations, if they include non-conservative
point defects and the necessary irradiation events,
can offer an alternative tool to study RIS and RIP
phenomena. We focus on the case of substitutional
.
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binary solid solutions A–B with an unmixing ten-
dency. Rather than to model a specific system, we
try to develop the simplest possible model which
takes into account the essential RIS and RIP mech-
anisms, in order to show how the details of diffusion
properties control the kinetic pathway of the alloy
under irradiation. Therefore, we restrict ourselves
to electron irradiation conditions, where the point
defect creation mechanism is more simple than
under ion irradiation and we ignore more compli-
cated effects (displacement cascades, point defect
clustering, etc.) which can also affect the segregation
and precipitation processes.

After a brief description of radiation damage and
diffusion mechanisms which induce RIS and RIP
phenomena, we present existing models and we
emphasize their main advantages and drawbacks
by comparison with AKMC simulations (Section
2). The atomistic diffusion model and the Monte
Carlo algorithm we use are described in Section 3.
The AKMC simulations are then applied to model
situations of increasing complexity: in Section 4 the
evolution of point defect concentrations in pure met-
als; in Section 5 segregation in ideal solid solutions
(two cases for which classical models are reliable);
and in Section 6, segregation and precipitation in
alloys with an unmixing tendency. Finally, we dis-
cuss the limitations of our approach and the
improvements which should be made in order to
model specific alloys.

2. Radiation induced segregation and precipitation

mechanisms

2.1. Radiation damage

In metallic materials, radiation damage is mainly
due to elastic collisions between the incident particles
and the atoms of the irradiated material, which result
in the formation of point defects and point defect
clusters. During an irradiation with light particles
(e.g. electrons), Frenkel pairs are created in a homo-
geneous manner in the target. On the contrary, with
heavier particles (heavy ions or neutrons), vacancies
and interstitials are created in a very inhomogeneous
way, in displacements cascades which have been
extensively studied by molecular dynamics [7,8].
Within a few picoseconds, hundreds or thousands
of defects are created in an area of few nanometers,
but most of them undergo recombination or cluster-
ing very rapidly. After typically 100 ps, only a few
clusters (vacancy or interstitial loops, stacking fault
tetrahedra) and a few isolated point defects remain
which can migrate by thermally activated jumps dur-
ing longer times.

As a result, point defect concentrations under
irradiation can exceed the equilibrium concentra-
tions by several orders of magnitude. Excess point
defects tend to migrate towards point defects sinks
(free surfaces, grain boundaries, dislocations, etc.),
where they can annihilate. Usually point defects
migrate by exchanging with the various chemical
elements with different frequencies: this results in a
redistribution of chemical elements in the vicinity
of the sinks, i.e. in the RIS phenomena.

Some empirical rules have been proposed from
experimental observations [1,4,6]: e.g. in binary
alloys with a strong size effect, one observes in most
cases an enrichment of undersized atoms and a
depletion of oversized ones near the sinks. Some
simple cases can be explained by inverse Kirkendall
effect: a flux of defects requires a flux of atoms, in
the same direction for interstitials, in the opposite
direction for vacancies. Therefore, the concentra-
tion of the elements which diffuse more rapidly as
interstitials, of more slowly with vacancies, will tend
to increase near the sinks. Bonds between defects
and solute or solvent atoms can also play a role: if
a point defect is strongly bound to a chemical
element, it can drag it towards the sinks [4,9].

2.2. Diffusion equations

It is often difficult to predict the segregation ten-
dency which results from the competition between
these various mechanisms. Most of the models
which have been proposed are based on generalized
Fick’s equations. In a dilute binary A–B alloy the
evolution of the local vacancy (CV), interstitial
(CI) and solute (CB) concentrations, is written as

oCV

ot
¼ G� RCICV � divJV;

oCI

ot
¼ G� RCICV � divJI;

oCB

ot
¼ �divJB;

ð1Þ

where G is the point defect creation rate and R a
recombination coefficient. Annihilation at sinks is
taken into account by imposing local equilibrium
concentrations CV ¼ Ceq

V and CI ¼ Ceq
I on each sink.

The relations between the fluxes JV, JI, JB and the
concentration gradients $CV, $CI, $CB involve sev-
eral coupling coefficients which control the sign, the
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magnitude and the kinetics of segregation [10].
Unfortunately, it is everything but trivial to deter-
mine the relations between the coupling coefficients
and the point defect jump frequencies, mainly
because of the correlation effects between successive
jumps. This has been done indeed only for few sim-
ple cases: ideal solid solutions [3,5] or dilute binary
alloys with special assumptions in order to limit the
number of jump frequencies to consider (see Mur-
phy for BCC alloys [11], Barbu and Lidiard for
FCC alloys [12]).

In other cases, especially for concentrated alloys,
phenomenological diffusion models such as the one
of Manning must be used. These models do not take
into account all the correlation effects and the bind-
ing energies between solute atoms and point defects
[10,13].

The other main drawback of diffusion equations
is that they only give the segregation kinetics, not
the precipitation ones. Such deterministic descrip-
tions do not involve thermal fluctuations which
control the nucleation processes. As a consequence,
the precipitation can only be predicted in a very
simplified way: e.g. by supposing that it occurs
instantaneously at locations where the solute con-
centration reaches the equilibrium solubility limit.
Nucleation kinetics in super-saturated solid solu-
tions are then especially difficult to study.

2.3. Lattice mean-field methods

Mean-field models are more suited to the study
of concentrated and multicomponent alloys: they
have been successfully applied for example to RIS
kinetics in Ni–Cu [14] and Fe–Ni–Cr [15,16] alloys.
They are based on a diffusion model on rigid lattice
where the activation energies of point defect jumps
are computed as a sum of broken bonds, using a
mean-field approximation. They can reproduce the
dependence of the jump frequencies on the local
environment and then give a better description of
coupling between fluxes. However they are limited
by their mean-field approximation and by their
treatment of correlation effects. The former point
can in principle be easily improved by using a higher
order approximation (e.g. a pair or a Cluster Varia-
tion Method instead of a simple point approxima-
tion [17]). The correlations are more difficult to
handle: new self-consistent mean-field methods are
under development [18] and could be soon applied
to alloys under irradiation. However such methods
are more suited to growth and coarsening than to
nucleation problems, again because they do not take
into account thermal fluctuations.

2.4. Atomistic kinetic Monte Carlo simulations

The same kind of atomistic diffusion model can
be handled by kinetic Monte Carlo simulations.
In the limited framework of a rigid lattice approx-
imation, space and time correlations – and then
thermal fluctuations – are naturally and exactly
taken into account, in a finite size system (with
typically 106–107 atoms), at the cost of much
more CPU time. Atomistic kinetic Monte Carlo
(AKMC) methods have been extensively used to
study phase transformation kinetics during ther-
mal ageing and the influence of diffusion properties,
at the atomic scale, on the kinetic pathways
[19–22]. In alloys under irradiation, they have
been mainly used to study phase transformations
controlled by ballistic mixing (dissolution of precip-
itates, inverse coarsening, disordering of intermetal-
lic compounds, etc. [23]), using simplified diffusion
models which did not explicitly take into account
the creation, recombination and annihilation at
sinks of point defects. Recently Rottler et al. have
presented AKMC simulations involving these
mechanisms to study the evolution of point defect
concentrations in pure BCC metals [24]. They have
especially introduced an interstitial model which
takes into account rotations between h111i direc-
tions, in order to study the effects of the competi-
tion between 1D and 3D dumbbell migration. In
a previous short paper, we have started to develop
a similar model (with a simpler interstitial model)
to study RIS and RIP phenomena in super-
saturated solid solutions [25]: we present here a
more detailed study, for both under and super-
saturated solid solutions, which emphasizes the
control of the microstructural evolution by point
defect diffusion properties.

3. Monte Carlo simulations

3.1. Atomic diffusion model

In the following, we consider binary A–B alloys
on a rigid 3D lattice with a body centered cubic
(BCC) structure. A and B atoms, vacancies (V)
and interstitials (I) are lying on the lattice. The inter-
nal energy of the system is computed as a sum of
pair interactions, between atoms (eAA, eAB and
eBB) or between atoms and point defects (eAV, eBV,



238 F. Soisson / Journal of Nuclear Materials 349 (2006) 235–250
eAI, eBI). For the sake of simplicity, we only use first
nearest neighbor pair interactions, but the model
could be easily extended to pair interactions at
longer range or even to multiplet interactions.

In the frame of this model, the cohesive energy
of the A metal is given by: EA

coh ¼ �ðz=2ÞeAA, the
vacancy formation energy in pure A by: EV

forðAÞ ¼
�ðz=2ÞeAA þ zeAV and the interstitial formation
energy by: EI

forðAÞ ¼ �ðz=2ÞeAA þ zeAI.
Without irradiation, the equilibrium phase dia-

gram of the A–B alloy only depends on the mixing
energy X = (z/2)(eAA + eBB � 2eAB), where z = 8 is
the BCC lattice coordination number. If X < 0, the
system presents an unmixing tendency, with a sepa-
ration between an A-rich and a B-rich phase, below
the critical temperature Tc ’ 0.4X/kB [17] (kB is the
Boltzmann constant). At low temperature (T � Tc),
the B solubility limit in the solid solution is given by
CB

eq ’ expðX=kBT Þ.
During thermal ageing or under irradiation,

kinetic properties of the A–B system are controlled
by the mechanisms of creation, diffusion and elimi-
nation of point defects. The simulations include
two kinds of point defects: vacancies and intersti-
tials. In substitutional alloys, self-interstitial atoms
created by irradiation are usually composed of two
atoms which shared a lattice site (‘dumbbell configu-
ration’). In the model, we therefore consider three
kinds of interstitial: AA, AB and BB dumbbells, as
three new species lying on the BCC lattice, with no
specific orientation.

The following events can occur:

1. Frenkel pair (FP) formation: two atoms X and Y,
separated by a constant distance dFP, are ran-
domly chosen in the simulation box. A vacancy
is put on the X site, a XY dumbbell on the Y site.
The frequency of the FP formation is directly
given, on each site, by the radiation flux G

expressed in dpa s�1 (displacement per atom and
per second). The formation of vacancies and
interstitials is then homogeneous in the whole
system, according to a mechanism which mimics
a single replacement collision sequence (as it
occurs during electron irradiation) rather than a
displacement cascade.

2. Vacancy jump: a vacancy exchanges with a X
atom (X = A or B) lying on a nearest-neighbor
site, with a thermally activated jump frequency
[19–23]:

CXV ¼ mXV exp½�DEXV=ðkBT Þ�; ð2Þ
where mXV is an attempt frequency and DEXV is an
activation energy, themigration barrier, which de-
pends on the local atomic configuration. In the
frame of the rigid lattice model, DEXV is given by

DEXV ¼ eSPXV �
X

n

eXn �
X

p

epV; ð3Þ

where the sums run over the nearest-neighbor
sites n of the X atom and the nearest-neighbor
sites p of the vacancy. The eSPXV term is the inter-
action energy of the X atom with the surround-
ing atoms, when it is at the saddle-point
position, during its exchange with the vacancy.
For a given set of pair interactions, the choice
of eSPXV controls the activation energy and its
dependence on the local environment. In the fol-
lowing eSPXV will be either considered as a constant
depending only on the nature of X, or written as
a sum of effective pair interactions between the X
atom and the atoms q lying on the nearest-neigh-
bor of the saddle-point position (6 sites in the
BCC structure): eSPXV ¼

P
qe

SP;V
Xq [20].

3. Interstitial jump: in the same way, an interstitial I
(I = AA, AB or BB) can exchange with a nearest-
neighbor X atom. As for the vacancy, the jump
frequency is given by

CXI ¼ mXI exp½�DEXI=ðkBT Þ�; ð4Þ
DEXI ¼ eSPXI �

X

n

eXn �
X

p

epI ð5Þ

with a saddle-point interaction energy eSPXI which
can be taken as a constant, or depend on the
local environment according to eSPXI ¼

P
qe

SP;I
Xq .

Interstitial migration energies are usually smaller
than vacancy ones and the eSPXI are chosen accord-
ingly. After the jump the atoms which form
the dumbbell can randomly dissociate or not.
For example, an AB dumbbell which has
exchanged with an A atom can give the following
reactions: AB + A ! B + AA (dissociation) or
AB + A ! A + AB (no dissociation), with equal
probabilities.

4. Recombination: during their migration, when a
vacancy and an interstitial become closer than
the recombination distance drec, they immediately
disappear by mutual recombination. One atom of
the XY dumbbell is randomly chosen (e.g. X)
and comes on the vacancy site, the other one
(Y) stays on the initial site.

5. Annihilation at point defect sinks: some special
lattice sites are chosen to act as perfect sinks.
They can be isolated sites or they can form lines
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(as a simple model for a dislocation line) or
planes (as a simple model for a grain boundary).
When a vacancy or an interstitial jumps onto
such a site, it immediately disappears and it is
replaced by a substitutional atom. The replacing
atom is chosen in a ‘reservoir’ of matter: when a
XY dumbbell annihilates on a sink site, one of
the atom (e.g. X) stays on the site and the other
one (Y) is stored in the reservoir. When a
vacancy annihilates, it is replaced by an atom
randomly chosen in the reservoir. This procedure
makes it possible to keep constant the composi-
tion in the system ‘simulation box + reservoir’.
In practice the number of atoms stored in the res-
ervoir is always very small by comparison with
the number of atoms in the simulation box.

In order to illustrate the influence of diffusion
properties on RIS and RIP kinetics, we use various
sets of pair interactions and kinetic parameters
(saddle-point interaction energies and attempt fre-
quencies). However, in each case we try to choose
parameters which correspond to reasonable thermo-
dynamic and diffusion properties. For example, in
pure metals the vacancy migration energies are of
the order of 1 eV and the interstitial migration ener-
gies are smaller [13]. The recombination distance drec
and the initial FP distance dFP are typical of electron
irradiations conditions, with respectively 3 and 10
nearest neighbor distances [26–28]. The kinetic have
been found to be not very sensitive to the value of
drec (which only slightly affects the point defect con-
centrations) and almost not sensitive to the one of
dFP (in the range dFP = 5–20 nearest neighbor dis-
tances which has been checked): therefore these
two parameters are kept constant in the following.

3.2. Residence Time Algorithm

AKMC simulations have been performed on a
rigid BCC lattice with typical sizes of the order of
106 atoms and periodic boundary conditions. The
initial configuration is a random solid solution with
a given composition, with no point defects.

At each Monte Carlo step, a event i is chosen
with a probability proportional to its frequency Ci

among the N possible events, using a Residence
Time Algorithm (see e.g. Ref. [19]). The time corre-
sponding to the Monte Carlo step is given by:
tMCS ¼ 1=

P
i¼1;NCi. The only difference introduced

by irradiation comes from instantaneous events,
i.e. events which occur with an infinite frequency
at soon as they are possible (recombination and
annihilation at sinks). All we have to do is to look
for such events at each MC step, and to perform
them as soon as they are possible, without incre-
menting the physical time.

4. Point defect concentrations in pure metals

Before to study the kinetics of complex RIS
phenomena, we have tested the behavior of our sim-
ulations in simpler situations, for which diffusion
models are reliable. Let us first consider the evolu-
tion of point defects in pure metals under irradia-
tion, to check the physical time scale and the
concentrations measured in the AKMC simulations.

4.1. Rate equation and sink strengths

In a pure metal, Eq. (1) reduce to ordinary differ-
ential equations which give the evolution of average
point defect concentrations [29]:

dCV

dt
¼ G� RCVCI � ksDVðCV � Ceq

V Þ;

dCI

dt
¼ G� RCVCI � ksDIðCI � Ceq

I Þ.
ð6Þ

All the coefficients of Eq. (6) can be directly written
as a function of geometric terms and jump frequen-
cies. The first term (G) is the irradiation flux (ex-
pressed in dpa s�1). The recombination term is
given by

R ¼ 4pdrec

DV þ DI

V at

; ð7Þ

where DV and DI are respectively the vacancy and
interstitial diffusion coefficients in the metal (with
an atomic volume Vat = a3/2 and lattice para-
meter a). For the vacancies: DV ¼ a2CAV ¼ a2mAV

exp½�EV
migðAÞ=ðkBT Þ�, with a migration barrier:

EV
migðAÞ ¼ eSPAV � ðz� 1ÞeAA � zeAV. A similar expres-

sion stands for the interstitials.
The last term of Eq. (6) corresponds to annihila-

tions at sinks. For the time being, our simulations
do not take into account the creation of equilibrium
point defect in the absence of irradiation. This corres-
ponds to: Ceq

V ¼ Ceq
I ¼ 0 (usually the equilibrium

point defects concentrations are indeed very small
by comparison with concentrations under irradiation
and can be neglected, except at very high tempera-
tures). The ‘sink strength’ ks depends on the geometry
and on the spatial distribution of sinks.Many studies
have been devoted to the computation of sink



Fig. 1. Evolution of the point defect concentrations in a pure
metal during irradiation at T = 400 K and G = 10�3 dpa s�1,
with EV

mig ¼ 1:2 eV and EI
mig ¼ 0:8 eV. Simulation box with 1283

lattice sites and one point defect sink. Effect of the sink geometry
and density: (a) point sink (1 annihilation site); (b) linear sink
(128 sites); (c) planar sink (128 · 128 sites). The symbols
correspond to Monte Carlo simulations, the lines to diffusion
Eq. (6).
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strengths [30,31]. For planar sinks (thin films or lay-
ers with a width e), the usual expression is

ks ¼
12

e2
. ð8Þ

For linear sinks (dislocations):

ks ¼
2pqd

lnð1=qÞ � 3=4
; ð9Þ

where qd is the dislocation density and q the ratio
between the capture ration of point defects and
the distance between dislocations. Last, for sinks
with a spherical geometry:

ks ¼ 4pRsCs; ð10Þ
where Rs and Cs are respectively the capture radius
and the concentration of the sinks.

4.2. Evolution of point defect concentrations

We have performed simulations with planar, lin-
ear and point sinks. In each case, the system contains
one sink, in the center of the simulation box. The
point defect concentrations are measured by time
averaging and can be compared with the results of
Eq. (6), where the parameters e, qd and Cs of Eqs.
(8)–(10) are given respectively by the width, the
section and the volume of the simulation box. The
following pair interactions have been used: eAA =
�1.07 eV, eAV = �0.30 eV, eAI = �0.10 eV, which
correspond to a cohesive energy EA

coh ¼ 4:28 eV, a
vacancy formation energy EV

forðAÞ ¼ 1:88 eV and
an interstitial formation energy EI

forðAÞ ¼ 3:84 eV
(these values are closed to those for high purity a-
iron [32]). The attempt frequencies are: mAV = mAI =
5 · 1015 s�1. The point defect migration energies are
then controlled by the saddle-point interaction ener-
gies, according to EV

mig ¼ eSPAV � ðz� 1ÞeAA � zeAV

and EI
mig ¼ eSPAI � ðz� 1ÞeAA � zeAI.

We have first chosen rather high migration ener-
gies (EV

mig ¼ 1:2 eV and EI
mig ¼ 0:8 eV) which give

slow kinetics, in order to highlight the first kinetics
steps. Fig. 1 displays the evolution of point defect
concentrations in the pure metal A, with three kinds
of sinks, at T = 400 K and G = 10�3 dpa s�1. There
is a good agreement between AKMC and diffusion
equations and one observes classical kinetic behav-
iors which depend on the sink density [29]. With
a point sink (low sink density, Fig. 1(a)) the
defect concentrations increase first linearly with
time (CI = CV = Gt, for t < 10�2 s). Then a quasi
steady-state is observed (with CI ¼ CV ¼

ffiffiffiffiffiffiffiffiffi
G=R

p
,

between 10�2 and 1 s), where the concentrations
are controlled by I/V recombinations. Interstitials
are more rapid than the vacancies, so they reach
the sink first: the interstitial concentration drops
(at t ’ 1 s), then the vacancies undergo less recom-
binations and their concentration increases. Finally,
when at much more longer time (t ’ 105 s), vacan-
cies annihilate on the sink, point defect concentra-
tions reach their steady-state values with Cst

I �
Cst

V. With linear and planar sinks (Fig. 1(b) and
(c)), the steady-state regime is reached at shorter
times and the quasi steady-state controlled by
recombinations vanishes, because of the higher
density in annihilation sites.

For a given type of sink, when the migration
barriers decrease (Fig. 2) or when the temperature
increases, one also gets the steady-state regime
much more rapidly. With smaller migration energies
(e.g. EV

mig ¼ 0:7 eV and EI
mig ¼ 0:35 eV close to the

estimated values in very high purity a-iron [32]),
one usually observes that with the typical simulation



Fig. 3. Evolution of the composition profile in an A50B50

ideal solid solution under irradiation at T = 500 K and G =
10�6 dpa s�1. Simulation box of 512 · 64 · 64 lattice sites with
one planar point defect sink in the middle of the long dimension
(at d = 0). The dots correspond to Monte Carlo simulations, the
lines to the diffusion model of Eq. (11).

Fig. 2. Evolution of the point defect concentrations in a pure
metal during irradiation at T = 500 K and G = 10�3 dpa s�1.
Simulation box with 1283 lattice sites and one planar point defect
sink. Effect of the point defect migration energies: (a) EV

mig ¼
1:2 eV and EI

mig ¼ 0:8 eV; (b) EV
mig ¼ 1 eV and EI

mig ¼ 0:5 eV;
(c) EV

mig ¼ 0:7 eV and EI
mig ¼ 0:35 eV. The symbols correspond

to Monte Carlo simulations, the lines to diffusion Eq. (6).
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box sizes, as soon as it is possible to measure the
point defect concentrations, they have reached their
steady-state values. The typical time scale of the
point defect evolution is then short compared to
that of RIS and RIP processes, as we will see below.

5. Segregation kinetics: ideal solid solutions

We now consider ideal A–B solid solutions,
where A and B atoms are fully miscible at every
temperature, in order to study segregation kinetics
without any precipitation or ordering. This can be
easily achieved in the simulations by choosing pair
interactions which give X = 0. We have chosen a
very simple case with eAA = eAB = eBB, eAV = eBV
and eAI = eBI: the point defects have then no ten-
dency to be bond preferentially to A or B atoms.
Diffusion properties are then controlled by the
saddle-point interaction energies eSPAV, e

SP
BV, e

SP
AI and

eSPBI , which are here chosen as constant, independent
of the atomic configuration surrounding the saddle-
point. With these hypothesis, the jump frequencies
are different for A and B atoms, but do not depend
on the local environment and the simple model
developed by Wiedersich et al. to study RIS in
Ni–Cu alloys can be applied [3,5]. Eq. (1) become:

oCV

ot
¼G�RCVCIþr½�ðdBV�dAVÞCVrCBþDVrCV�;

oCI

ot
¼G�RCVCIþr½ðdBI�dAIÞCIrCBþDIrCI�;

oCB

ot
¼r½DBrCBþCBðdBIrCI�dBVrCVÞ�;

ð11Þ
where the effective diffusion coefficients DV, DI and
DB depend on the local concentrations according to:

DV ¼ dAVCA þ dBVCB;

DI ¼ dAICA þ dBICB;

DB ¼ dBVCV þ dBICI.

ð12Þ

The coupling between point defect and solute
fluxes is then controlled by only four partial
diffusion coefficients: dAV, dBV, dAI and dBI, which



Table 1
AKMC parameters used for the simulations of segregation in
ideal solid solution with dAV > dBV and dAI = dBI

eAA = eAB = eBB �1.07 eV
eAV = eBV �0.30 eV
eAI = eBI �0.10 eV
mAV = mBV = mAI = mBI 5 · 1015 s�1

eSPAV �8.89 eV

eSPBV �8.79 eV

eSPAI ¼ eSPBI �7.79 eV
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are directly related to the jump frequencies by:
dAV = a2fAVCAV [3] (and similar relations for dBV,
dAI and dBI). The correlation factors fAV, fBV, fAI

and fBI are estimated from the jump frequencies,
using the theory of diffusion in random alloys
[10,33]. For composition independent jump frequen-
cies they remain close to one, but slightly depend on
the local composition.

Figs. 3 and 4 give two examples of RIS kinetics in
two A–B alloys of different compositions and for
different radiation fluxes. The simulation box con-
tains 512 · 64 · 64 lattice sites, with one planar
point defect sink in the middle of the longest direc-
tion. The AKMC parameters are given in Table 1.
We have chosen a case where all the dumbbell inter-
stitials have the same jump frequency (dAI = dBI)
and where CAV > CBV (i.e. dAV > dBV). The vacancy
flux towards the sink induces an enrichment of slow
B atoms near the sink, while the interstitial flux
induces no preferential coupling and no segregation.

The composition profiles measured in AKMC
simulations are very close to the ones predicted by
Fig. 4. Evolution of the composition profile in an A10B90

ideal solid solution under irradiation at T = 500 K and G =
10�3 dpa s�1. Simulation box of 512 · 64 · 64 lattice sites with one
planar point defect sink in the middle of the long dimension (at
d = 0). The dots correspond to Monte Carlo simulations, the lines
to the diffusion model of Eq. (11).

Fig. 5. Steady-state concentration profiles of point defects in a
A10B90 ideal solid solution under irradiation at T = 500 K and
G = 10�3 dpa s�1. Simulation box of 512 · 64 · 64 lattice sites
with one planar point defect sink in the middle of the long
dimension (at d = 0). The dots correspond to Monte Carlo
simulations, the lines to the diffusion model of Eq. (11).
numerical integration of Eq. (11), as can be seen
in Figs. 3 and 4. The same agreement is observed
for the point defect concentration profiles, as
can be seen in Fig. 5. For high radiation fluxes
(G = 10�3 dpa s�1 in Fig. 4), one observes non-
monotonous solute concentration profiles, typical
of a non-equilibrium segregation. The particular
profile of Fig. 4 corresponds typically to the one
expected when (dBV/dAV) < (dBI/dAI) [2].

6. Precipitation kinetics

6.1. Monte Carlo parameters

The situation becomes more complex if we
consider A–B regular solid solutions with a ten-
dency to phase separation. We have used four differ-
ent sets of pair interactions, attempt frequencies and
saddle-point interactions (Table 2), which corres-
pond to various thermodynamic and kinetic proper-
ties. In pure A and pure B, all these sets of



Table 2
Monte Carlo parameters used to study radiation induced precipitation in A–B alloys

Monte Carlo
parameters

AKMC1
high solubility
DV

B < DV
A;D

I
B > DI

A

AKMC2
high solubility
DV

B > DV
A;D

I
B < DI

A

AKMC3
low solubility
DV

B < DV
A;D

I
B > DI

A

AKMC4
low solubility
DV

B > DV
A;D

I
B < DI

A

eAA = eBB �1.070 �1.070 �1.070 �1.070
eAB �1.043 �1.043 �0.985 �0.985
eAV = eBV �0.30 �0.30 �0.30 �0.30
eAI = eBI 0 0 0 0
mAV = mBV = mAI

= mBI (s
�1)

5 · 1015 5 · 1015 5 · 1015 5 · 1015

eSP;VAA (eV) �1.481 �1.481 �1.481 �1.481

eSP;VAB (eV) �1.465 �1.415 �1.382 �1.350

eSP;VBA (eV) �1.415 �1.498 �1.348 �1.433

eSP;VBB (eV) �1.481 �1.481 �1.481 �1.481

eSP;IAA (eV) �1.165 �1.165 �1.165 �1.165

eSP;IAB (eV) �1.133 �1.165 �1.048 �1.066

eSP;IBA (eV) �1.165 �1.115 �1.132 �1.032

eSP;IBB (eV) �1.165 �1.165 �1.165 �1.165
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parameters correspond to the same cohesive ener-
gies (4.28 eV), vacancy and interstitial formation
energies (1.88 and 4.28 eV), and vacancy and inter-
stitial migration energies (1.0 and 0.5 eV). We have
used a simulation box of 256 · 64 · 64 lattice sites
with one planar point defect sink in the middle of
the longest direction.

Sets of parameters AKMC1 and AKMC2 corre-
spond to a relatively low mixing energy (X =
�0.216 eV), which correspond to a relatively high
mutual solubility limit (Ceq

B ’ 0:08 at 800 K). It
has been used to study undersaturated solid solu-
tions, but keeping sufficient solute concentrations
to get reasonable statistics.

With sets of parameters AKMC3 and AKMC4,
the pair interactions give a higher mixing energy
(X = �0.680 eV): there is then almost no mutual
miscibility of A and B below 1000 K (Ceq

B ’ 3:7�
10�4 at 1000 K and 1.4 · 10�7 at 500 K). These
parameters have been used to study RIS and RIP
in highly super-saturated solid solutions.

As in the previous section, the tendency for RIS
of A and B atoms is controlled by the choice of
saddle-point interaction energies (eSPAV, e

SP
BV, e

SP
AI and

eSPBI ) which determines the A and B diffusion coeffi-
cients in the alloy, by vacancy and interstitial mech-
anisms. But these diffusion coefficients now strongly
depend on the solid solution composition, which
evolves with the segregation process. It is not possi-
ble to compute the A and B diffusion coefficients in
the whole composition range, but the segregation
tendencies can be roughly controlled by fixing their
values in pure A and B. For the vacancy mechanism,
we will consider: the self-diffusion coefficients of A
½DV

AðAÞ� and B ½DV
BðBÞ�, the impurity diffusion coeffi-

cient of A in B ½DV
AðBÞ� and of B in A ½DV

BðAÞ�. These
four diffusion coefficients and the corresponding cor-
relation factors have been directly computed from a
small number of jump frequencies, using the theory
of diffusion in dilute alloys [20,33]. Similar diffusion
coefficients ½DI

AðAÞ; DI
AðAÞ; DI

AðAÞ and DI
AðAÞ� in

pure A and B are considered for the interstitial
mechanisms, but with the jump mechanism consid-
ered in this study, there are no available analytical
relations between these coefficients and the jump fre-
quencies: the interstitial diffusion coefficients have
been directly measured by AKMC simulations in
dilute solid solutions.

For the sake of simplicity, we have only consid-
ered situations where the vacancy and interstitial
fluxes give the same segregation trend. Sets of param-
eters AKMC1 and AKMC3 correspond to a slow
diffusion of B by the vacancy mechanism in pure A
and in pure B ½DV

BðAÞ < DV
AðAÞ and DV

BðBÞ <
DV

AðBÞ� and to a rapid diffusion of B by the interstitial
mechanism ½DI

BðAÞ > DI
AðAÞ and DI

BðBÞ > DI
AðBÞ�.

The two diffusion mechanisms tend to increase
the B concentration near the point defect sinks,
by inverse Kirkendall effect. On the contrary,
with sets of parameters 2 and 4 one gets a rapid
diffusion of B by the vacancy mechanism ½DV

BðAÞ >
DV

AðAÞ and DV
BðBÞ > DV

AðBÞ� and a slow diffusion



Fig. 6. Evolution of the solute concentration profile in an
undersaturated A–B alloy (CB = 0.05 for Ceq

B ¼ 0:08) under
irradiation at T = 800 K, G = 10�6 dpa s�1, in the case DV

B <

DV
A and DI

B > DI
A. Monte Carlo simulations with 256 · 64 · 64

lattice sites and one planar point defect sink in the middle of the
long dimension (at d = 0).

Fig. 7. Evolution of an undersaturated A–B alloy (CB = 0.05 for Ceq
B ¼ 0

DV
B < DV

A and DI
B > DI

A. Microstructure at (a) 2.46 · 10�3, (b) 2.02 · 10
lattice sites and one planar point defect sink in the middle of the long dim
point defect sink sites.
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of B by the interstitial mechanisms ½DI
BðAÞ <

DI
AðAÞ and DI

BðBÞ < DI
AðBÞ�, which both tend to

decrease the B concentration near the sinks.

6.2. Undersaturated solid solutions

6.2.1. Solute Enrichment at sinks

Let us first consider simulations with the first set
of parameters (AKMC1, Table 2). At T = 800 K,
the evolution of an undersaturated solid solution
(solute concentration CB = 0.05, for Ceq

B ¼ 0:08)
under irradiation at G = 10�6 dpa s�1, is displayed
in Figs. 6 and 7. The simulation box contains one
planar point defect sink. In this alloy B solute
atoms diffuse more slowly than A atoms by the
vacancy mechanisms (DV

B=D
V
A ’ 0:09 in pure A and

DV
B=D

V
A ’ 0:33 in pure B, at 800 K) and more

rapidly by the interstitial mechanism (DI
B=D

I
A ’ 18
:08) under irradiation at T = 800 K, G = 10�6 dpa s�1, in the case
�2 and (c) 1.20 dpa. Monte Carlo simulations with 256 · 64 · 64
ension. The red dots correspond to solute atoms, the blue ones to
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in pure A and DI
B=D

I
A ’ 1 in pure B). In such a case,

with only nearest-neighbor interaction on a BCC
lattice [10,33], the flux of vacancy towards the sink
drives a net flux of the rapid A atoms in the opposite
direction: one observes in the simulation a strong
solute enrichment on the point defect sink (Fig. 6).
The solute concentration rapidly exceeds the solu-
Fig. 8. Evolution of the solute concentration profile in an
undersaturated A–B alloy (CB = 0.075 for Ceq

B ¼ 0:08) under
irradiation at T = 800 K, G = 10�6 dpa s�1, for DV

B > DV
A and

DI
B < DI

A.

Fig. 9. Evolution of an undersaturated A–B alloy (CB = 0.075 for Ce
B

DV
B > DV

A and DI
B < DI

A. Microstructure at (a) 4.50 · 10�3, (b) 6.0 · 10�2

blue dots to point defect sink sites. On (d), a thin slice of three atomic pla
of clarity, B monomers have been omitted.
bility limit and precipitation starts on the sink. A
continuous layer of B rich phase forms and grows
as the irradiation dose increases, while the solute
concentration in the matrix decreases (Fig. 7).

6.2.2. Solute depletion at sinks

In the opposite case (parameters AKMC2, Table
2), when B atoms diffuse more rapidly than A
atoms by the vacancy mechanism, and more slowly
by the interstitial mechanism, one observes a solute
depletion near the sink. For low solute concentra-
tions, the solid solution remains undersaturated
and no precipitation occurs. However, for slightly
under saturated alloys and high sink densities (Figs.
8 and 9), the solute depletion near the sinks leads to
a solute enrichment far from the sinks which is suf-
ficient to produce a beginning of precipitation far
from the sinks. One example is displayed in Fig. 9
in a solid solution A–B under irradiation at
800 K and G = 10�6 dpa s�1, with CB = 0.075 for
Ceq

B ¼ 0:08 (the ratio between A and B diffusion
coefficients are: DV

B=D
V
A ’ 3:6 and DI

B=D
I
A ’ 0:36

in pure A, DV
B=D

V
A ’ 10:7 and DI

B=D
I
A ’ 0:05 in

pure B).
q ¼ 0:08) under irradiation at T = 800 K, G = 10�6 dpa s�1, for
, (c) and (d) 1.0 dpa. The red dots correspond to solute atoms, the
nes, at the very top of the simulation box is displayed: for the sake
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6.3. Super-saturated solid solution

6.3.1. Solute enrichment at sinks

In super-saturated solid solutions, the previous
segregation tendencies are still valid, but bulk pre-
cipitation can take place and compete with segrega-
tion and precipitation at sinks. We now consider a
strongly super-saturated A–B alloy with a high mix-
ing energy (solute concentration CB = 0.05, for a
solubility limit Ceq

B ¼ 1:4� 10�7 at 500 K). The case
illustrated in Figs. 10 and 11 corresponds to the set
of parameters AKMC3 of Table 2 (at 500 K:
DV

B=D
V
A ’ 0:08 and DI

B=D
I
A ’ 5 in A, DV

B=D
V
A ’ 0:29

and DI
B=D

I
A ’ 2 in pure B). The homogeneous

precipitation and the solute enrichment at the sinks
start simultaneously. Near the sink, the solute
super-saturation (and therefore then, the nucleation
driving force) is higher (Fig. 10(a)), but the point
defect concentration (and then, the solute mobility)
is lower (Fig. 10(b)). As a consequence, the precipi-
tate growth and coarsening take place more rapidly
Fig. 10. (a) Evolution of the solute concentration profile and (b)
point defect concentration profile at 3.38 · 10�4 dpa in a strongly
super-saturated A–B alloy (CB = 0.05 for Ceq

B ’ 0) during irradi-
ation at T = 500 K, G = 10�6 dpa s�1 for DV

B < DV
A and DI

B > DI
A.
far from the sink (Fig. 11(a) and (b)). However, at
higher doses (Fig. 11(c)), the segregation leads to
the formation and growth of a precipitate layer
at the sink. A solute depleted and precipitate free
zone is observed between the layer and the large
precipitates. Finally the large precipitates which
have coarsened far from the sink tend to vanish
because of the continuous segregation of solute
towards the sink. At the end of the sequence only
the precipitate layer remains (Fig. 11(d)). We have
observed that the competition between the precipi-
tation in the bulk and at the sink, and the resulting
precipitate microstructure, are very sensitive to the
diffusion properties and to the super-saturation.

6.3.2. Solute depletion at sinks

The set of parameters AKMC4 of Table 2 corre-
sponds to a rapid diffusion of B by the vacancy
mechanism (at 500 K: DV

B=D
V
A ’ 8:9 in pure A,

DV
B=D

V
A ’ 13:6 in pure B) and to a slow diffusion

by the interstitial mechanism (at 500 K: DI
B=D

I
A ’

0:06 in pure A, DI
B=D

I
A ’ 0:14 in pure B). Under

irradiation, the point defect flux towards the point
defect sink rapidly leads to a local B depletion (Figs.
12 and 13). The phase separation process starts
everywhere in the sample (Fig. 13(a)), except in
the vicinity of the sink, because of the B solute
depletion and of the lower point defect concentra-
tion. As the radiation dose increases (Fig. 13(b)
and (c)), the growth and coarsening processes are
more rapid for precipitates located far away from
the sink, where the solute concentration is higher:
a precipitate free zone then grows around the sink.

7. Discussion

The previous results show that AKMC simula-
tions can be used to study qualitatively RIS and
RIP phenomena in simple alloys, to rationalize the
segregation and precipitation behavior as a function
of the diffusion properties and to identify the main
parameters which control the evolution of the
microstructure.

It must be emphasized that we have considered
binary BCC alloys with only first-nearest neighbor
interactions. The radiation induced segregation
trends are then relatively simple to understand,
because they can be mainly explained in terms of
inverse Kirkendall effects. For example, the solute
and vacancy fluxes are always in opposite directions
when the solute atoms diffuse faster than solvent
atoms, because vacancy-solute complexes cannot



Fig. 11. Evolution of a strongly super-saturated A–B alloy (CB = 0.05 for Ceq
B ’ 0) under irradiation at T = 500 K, G = 10�6 dpa s�1, for

DV
B < DV

A and DI
B > DI

A. Microstructure at (a) 3.38 · 10�4 dpa, (b) 1.69 · 10�2 dpa, (c) 3.5 · 10�2 dpa and (d) 6.5 · 10�2 dpa. The red dots
correspond to solute atoms, the blue dots to point defect sink sites.

Fig. 12. Evolution of the solute concentration profile in a
strongly super-saturated A–B alloy (CB = 0.05 and Ceq

B ’ 0)
under irradiation at T = 500 K, G = 10�6 dpa s�1, for DV

B > DV
A

and DI
B < DI

A.
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migrate without dissociation [12]. But it is well
known that in other alloys, in case of strong bind-
ing, the vacancy can drag rapidly diffusing solute
atoms towards the sinks (iron-phosphorus dilute
alloys are a typical example [9]). In BCC alloys,
this requires at least second-nearest neighbor inter-
actions, which could be easily introduced in the
diffusion model to deal with such situations. Never-
theless, it is worth to notice that our simulations are
based on other approximations which can also affect
the quantitative behavior of the system.

One of the main limitations of the present simu-
lations lies in the interstitial model we have used. In
pure metals, interstitials created under irradiation
usually present relatively simple dumbbell structures
[34,35]. In FCC crystals, dumbbells are usually ori-
ented in a h100i direction and they rotate during the
jump. In BCC crystals, the stable dumbbell configu-
ration usually corresponds to a h110i orientation,
but the h111i dumbbells are almost as stable, except
in the case of iron where the stability difference is
more important [32]. In most of the cases, migration
seems to occur without rotation, which should
result in a 1D or 2D interstitial diffusion. In iron,
recent ab initio calculations, show a h100i dumbbell
migration with rotation, which should lead to 3D
interstitial diffusion [32].

In alloys, the situation is more complex: the
presence of solute atoms could modify the stable
configurations, or trap the dumbbells. Moreover



Fig. 13. Evolution of a strongly super-saturated A–B alloy (CB = 0.05 and Ceq
B ’ 0) under irradiation at T = 500 K, G = 10�6 dpa s�1, for

DV
B > DV

A and DI
B < DI

A. Microstructure at: (a) 8.77 · 10�4, (b) 2.63 · 10�2 and (c) 0.415 dpa. The red dots correspond to solute atoms B,
the blue ones to point defect sink sites.
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mixed-dumbbell formation, with several migration,
rotation and dissociation mechanisms are possible.
Such features are not taken into account in our
dumbbell description, but they can clearly affect
the correlation effects, the diffusion properties and
finally the RIS and RIP kinetic pathway under irra-
diation. For example the ‘caging’ effects which
result in a dynamical trapping of mixed dumbbells
in FCC alloys [34] could not be reproduced with
such a simple interstitial description. Of course it
is in principle quite easy to modify the dumbbell
model in the simulation and to simulate such prop-
erties. This would require the introduction of new
parameters (especially new activation energies,
which should depend on the local atomic configura-
tion). Unfortunately, they are very few reliable data,
even in simple binary alloys, to fit these new param-
eters. However, one can expect that such parameters
should be soon computed by new rapid ab initio cal-
culation methods [32].
Point defects clustering can also affect the segre-
gation and precipitation kinetics under irradiation.
Such clusters can form point defects sinks, modify
the point defect distributions or act as precipitate
nucleus. Moreover, many molecular dynamics simu-
lations predict that small interstitial clusters can
undergo a very rapid 1D motion (at least in pure
metals), which should also affect the kinetic behav-
ior under irradiation [8,24]. For the time being, all
this events are ignored in our simulations, but they
could be introduced in our AKMC simulations,
with the same restriction concerning the need for
reliable parameters.

The formation of Frenkel pairs is also modeled
in a very simple way (see Section 3.1), with small
replacement collision sequences and a homoge-
neous production of vacancies and interstitials
in the simulations box. Such a mechanism corre-
sponds to electron irradiation conditions. To study
irradiation by heavier particles, displacement
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cascades could be introduced in the simulations
(one could use for example the point defect and sol-
ute distributions obtained by molecular dynamics
simulations).

In addition to RIS and RIP phenomena, phase
transformations can also be modified or induced by
ballistic mixing effects. The replacements which
occur in replacement collision sequences or displace-
ment cascades are known to produce dissolution or
fragmentation of precipitates (inverse coarsening),
disordering of ordered phases, etc. Such effects usu-
ally occur when the ‘radiation intensity’ c, which
can be defined as the ratio between ballistic and ther-
mally activated jump frequencies, is high enough
(c � 1 or higher) [23]. In the simulations which have
been presented here, the temperatures are relatively
high and the radiation flux relatively low, so that c
always remains very small (typically: c � 10�5). This
situation corresponds for example to the case of pres-
sure vessels steels in nuclear power plants. However
at lower temperatures or higher radiation fluxes,
ballistic mixing can become predominant. For the
time being, these phenomena have only been studied
with AKMC simulation with conservative point
defects. It is worth to mention that since the ballistic
mechanisms are naturally taken into account in our
simulations, they could also be used to study these
problems.
8. Conclusion

AKMC simulations with creation, migration,
mutual recombination and annihilation at sinks
of vacancies and interstitials have been developed
and applied to radiation induced segregation and
precipitation kinetics in binary alloys. Despite the
simplifying approximations that have been made,
especially to describe the dumbbell structure and
the migration of self-interstitial, they have been
successfully used to model the evolution of alloys
until radiation doses of typically 1 dpa. The kinetic
pathway, the transient and steady-state micro-
structures depend on complex interactions between
the segregation trend, the local point defect con-
centrations and the local super-saturations. Monte
Carlo simulations can be used to show how the
resulting evolution is controlled by the details of
atomic-scale diffusion properties. Further develop-
ment of the AKMC model, in connection with
ab initio calculations, are planned to model spe-
cific alloys.
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